Local Regression: Automatic Kernel Carpentry
نویسندگان
چکیده
منابع مشابه
Kernel Carpentry for Online Regression Using Randomly Varying Coefficient Model
We present a Bayesian formulation of locally weighted learning (LWL) using the novel concept of a randomly varying coefficient model. Based on this, we propose a mechanism for multivariate non-linear regression using spatially localised linear models that learns completely independent of each other, uses only local information and adapts the local model complexity in a data driven fashion. We d...
متن کاملImproved double kernel local linear quantile regression
As sample quantiles can be obtained as maximum likelihood estimates of location parameters in suitable asymmetric Laplace distributions, so kernel estimates of quantiles can be obtained as maximum likelihood estimates of location parameters in a general class of distributions with simple exponential tails. In this paper, this observation is applied to kernel quantile regression. In so doing, a ...
متن کاملLeaving Local Optima in Unsupervised Kernel Regression
Abstract. Embedding high-dimensional patterns in low-dimensional latent spaces is a challenging task. In this paper, we introduce re-sampling strategies to leave local optima in the data space reconstruction error (DSRE) minimization process of unsupervised kernel regression (UKR). For this sake, we concentrate on a hybrid UKR variant that combines iterative solution construction with gradient ...
متن کاملOptimal Kernel Shapes for Local Linear Regression
Local linear regression performs very well in many low-dimensional forecasting problems. In high-dimensional spaces, its performance typically decays due to the well-known "curse-of-dimensionality". A possible way to approach this problem is by varying the "shape" of the weighting kernel. In this work we suggest a new, data-driven method to estimating the optimal kernel shape. Experiments using...
متن کاملNon-Local Kernel Regression for Image and Video Restoration
This paper presents a non-local kernel regression (NL-KR) method for image and video restoration tasks, which exploits both the non-local self-similarity and local structural regularity in natural images. The non-local self-similarity is based on the observation that image patches tend to repeat themselves in natural images and videos; and the local structural regularity reveals that image patc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Science
سال: 1993
ISSN: 0883-4237
DOI: 10.1214/ss/1177011002